Modeling of Cd uptake and efflux kinetics in metal-resistant bacterium Cupriavidus metallidurans.
نویسندگان
چکیده
The Model of Uptake with Instantaneous Adsorption and Efflux, MUIAE, describing and predicting the overall Cd uptake by the metal-resistant bacterium Cupriavidus metallidurans CH34, is presented. MUIAE takes into account different processes at the bacteria-medium interface with specific emphasis on the uptake and efflux kinetics and the decrease in bulk metal concentration. A single set of eight parameters provides a reasonable description of experimentally determined adsorbed and internalized Cd, as well as the evolution of dissolved Cd concentrations with time, for an initial Cd concentration between 10(-8) and 10(-4) M, covering the situation of contaminated environments and heavily polluted effluents. The same set of parameters allowed successful prediction of the internalized and adsorbed Cd as a function of the measured free Cd ion concentration in the presence of natural and anthropogenic ligands. The findings of the present study reveal the key role of Cd efflux and bulk depletion on the overall Cd uptake by C. metallidurans, and the need to account for these processes to understand and improve the efficiency of the metal removal from the contaminated environment.
منابع مشابه
Contributions of five secondary metal uptake systems to metal homeostasis of Cupriavidus metallidurans CH34.
Cupriavidus metallidurans is adapted to high concentrations of transition metal cations and is a model system for studying metal homeostasis in difficult environments. The elemental composition of C. metallidurans cells cultivated under various conditions was determined, revealing the ability of the bacterium to shield homeostasis of one essential metal from the toxic action of another. The con...
متن کاملInterplay between seven secondary metal uptake systems is required for full metal resistance of Cupriavidus metallidurans.
The beta-proteobacterium Cupriavidus metallidurans is able to grow in metal-contaminated environments due to having sophisticated metal efflux systems. Here, the contribution of all seven known secondary metal uptake systems (ZupT, PitA, CorA1, CorA2, CorA3, ZntB, HoxN) to metal resistance is characterized. In a strategic deletion approach, all ten double deletion mutants, a variety of triple a...
متن کاملThe biological chemistry of the transition metal "transportome" of Cupriavidus metallidurans.
This review tries to illuminate how the bacterium Cupriavidus metallidurans CH34 is able to allocate essential transition metal cations to their target proteins although these metals have similar charge-to-surface ratios and chemical features, exert toxic effects, compete with each other, and occur in the bacterial environment over a huge range of concentrations and speciations. Central to this...
متن کاملCharacterization of the Δ7 Mutant of Cupriavidus metallidurans with Deletions of Seven Secondary Metal Uptake Systems
Central to the ability of Cupriavidus metallidurans to maintain its metal homoeostasis is the metal transportome, composed of uptake and efflux systems. Seven secondary metal import systems, ZupT, PitA, CorA1, CorA2, CorA3, ZntB, and HoxN, interact and are at the core of the metal uptake transportome. The 7-fold deletion mutant Δ7 (ΔzupT ΔpitA ΔcorA1ΔcorA2ΔcorA3ΔzntB ΔhoxN) of parent strain AE1...
متن کاملGenomic Analyses of Transport Proteins in Ralstonia metallidurans
Ralstonia (Wautersia, Cupriavidus) metallidurans (Rme) is better able to withstand high concentrations of heavy metals than any other well-studied organism. This fact renders it a potential agent of bioremediation as well as an ideal model organism for understanding metal resistance phenotypes. We have analysed the genome of Rme for genes encoding homologues of established and putative transpor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Environmental science & technology
دوره 44 12 شماره
صفحات -
تاریخ انتشار 2010